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Instability of unsteady flows or configurations 
Part 1. Instability of a horizontal liquid layer on an 

oscillating plane 
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A layer of viscous liquid with a free surface is set in motion by the lower boundary 
moving simple-harmonically in its own plane. The stability of this motion is 
investigated. Since the primary flow is time-dependent, the time variable cannot 
be separated from at least one space variable, and a new approach must be used 
to investigate the problem. In this paper the stability of long waves is studied by 
a perturbation method which has not been applied before to problems of stability 
of unsteady flows, and it is found that the flow under consideration can be un- 
stable for long waves. 

1. Introduction 
It is well known that problems of stability of unsteady flows are troublesome 

because their time-dependence precludes the use of the exponential time-factor 
for the perturbation quantities. Criteria for stability in integral form are not 
difficult to obtain. But these criteria are not very helpful because they involve 
the unknown eigenfunctions. One can of course follow the method of Orr (1907), 
obtain a formula expressing the Reynolds number R as the ratio involving in- 
tegrals containing eigenfunctions as integrands, and determine a lower bound 
for the critical Reynolds number by minimizing R, allowing all disturbances for 
the integrands, whether dynamically possible or not, provided only that they 
satisfy the equation of continuity and the boundary conditions. The non-linearity 
of the equations of motion is allowed to stand. How far these lower bounds fall 
short of the mark can be judged by what Orr (1  907) obtained for plane Couette 
flow and plane Poiseuille flow, for both of which he obtained 89. This has also 
been obtained by Conrad & Criminale (1965), who gave 88-88 for the former and 
88.91 for the latter flow. Recently Joseph (1966) showed that Orr’s lower bound 
is wrong for plane Couette flow at least, and gave the even lower number 41.3 
as the new reliable lower bound. But it is known that plane Couette flow is stable 
for all Reynolds numbers and plane Poiseuille flow is stable if an identically 
defined Reynolds number is below 5250. However, the lower bounds are good for 
finite disturbances, and even for infinitesimal disturbances such estimates are 
often useful at least in a transient period, before more significant information is 
obtained . 
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Conrad & Criminale (1965) also attempted to generalize Squire’s (1933) result 
for three-dimensional disturbances to apply to  unsteady flows. But, as they 
themselves indicated, the time transformation does not allow the generalization 
to be a useful one. In  fact the stability or instability of a three-dimensional 
disturbance in a given unsteady two-dimensional flow can be determined by the 
stability or instability of a two-dimensional disturbance in another unsteady 
two-dimensional flow, which differs from the original one not merely in the 
Reynolds number, as in the case of steady primary flows, but aIso in the distribu- 
tion of the velocity of the primary flow, and which will be different for a different 
three-dimensional disturbance. 

Conrad & Criminale (1965) also attempted to obtain a Rayleigh theorem for 
time-dependent flows. They assumed the eigenfunction v to have the form 

N 

n= 1 
V(Y, 7 )  = c 0% 17) A2 (39, 

in which T is a time and y a spatial co-ordinate, obtained a second-order differen- 
tial equat,ion for each of $%, and from it obtained the desired theorem. The con- 
clusion, however, cannot be reached from the equation for each $%, and must be 
arrived at  by considering the sum they assumed. Hence the theorem has not 
been proved for unsteady flows. 

Much of existing work on the stability of unsteady flows is based on the assump- 
tion of quasi-steadiness, that is, on the assumption that the stability of an un- 
steady flow is determined by whether or not it is stable for all the (varying) 
velocity distributions if each of these distributions is assumed to persist, The 
most recent study of hydrodynamic stability based on the assumption of quasi- 
steadiness is that of Currie (1967), in whose paper many other references can be 
found, It is concerned with the onset of BBnard cells when the primary tempera- 
ture distribution is time-dependent. If the frequency oy: of the primary flow (or 
temperature) is much less than a reference velocity V divided by a reference 
length d, it can be shown that the approach of quasi-steadiness can predict 
stability or instability over time intervals small compared with the period 
T = 2n/w,. If it predicts instability, the slow variation of the primary flow with 
time may not materially affect the conclusion. But many flows predicted to be 
stable by the approach of quasi-steadiness may well turn out to be unstable in 
the long run. We know at least one instance illustrating the erroneousness of the 
ordinary approach of quasi-steadiness. Benjamin & Ursell (1954) showed that 
when a cylinder containing inviscid liquid with a free surface is shaken up and 
down with a simple-harmonic acceleration of amplitude uo, the fluid can be 
unstable even if a. is very much less than the gravitational acceleration g ,  
whereas an analysis based on quasi-steadiness predicts stability in that case. 
This paper presents another illustration, which is believed to be the first one for 
the instability of a viscous fluid. The method used can be applied to many other 
problems concerning hydrodynamic stability of time-dependent flows or 
configurations. 

We consider here the stability of a primary flow which is completely unsteady, 
in the sense that it contains no steady part whatsoever. The approach of quasi- 
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steadiness is discarded, and we seek to investigate the instability of the flow in 
the long run. The particular flow under investigation is described in the next 
section. 

0 ---- 

__c 

Vcosor 

2. Primary flow 
A horizontal layer of liquid of depth d,  viscosity ,u, and density p is set in motion 

by the lower boundary moving in the X-direction (figure 1)  with velocity 

-+-X -‘--f- 
d 

Y 

FIGURE 1. Definition sketch 

V cos w* t ,  w* being the frequency, t the time, and V the amplitude of the forcing 
motion. We shall introduce the dimensionless independent variables 

r = Vt/d,  x = X / d ,  y = Y/d.  ( 1 )  

In  terms of these, the equation governing the primary flow is 

in which U = u ( y ,  r ) /  V ,  R = Vd/v  = the Reynolds number, (3) 

U being the velocity of the primary flow and v the kinematic viscosity. The 
boundary conditions for U are 

aU/ay = 0 a t  y = 0 ,  (4) 

and U = cosw,t = coswr a t  y = 1, with w = w,d/V.  ( 5 )  

U = A [ W +  W*-itanhptanP(Ui- W*)],  (6) 

The solution of (2), (4) and (5) is 

with the asterisk as a superscript indicating complex conjugat,e, and 

cos p cosh P w R  4 
W = cosh [P( 1 + i ) y ]  e i w r ,  A = 

2(cos2p+sinh2P)’ = (7) 
The U given by (6) is real, as is obvious by inspection. It is written in that form 
in order to facilitate the integration to be performed later. 

The pressure j? for the primary flow is hydrostatic, and is zero a t  y = 0. Hence 

p = g p Y  = gpdy. ( 7 )  
47-2 
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3. Formulation of the stability problem 
Although Squire's theorem cannot be generalized in a useful way to justify 

the consideration of two-dimensional disturbances only, it  is still true that the 
stability of a three-dimensional disturbance can be determined from that of a 
two-dimensional one for a different flow. Hence the method of solution for two- 
dimensional disturbances will apply to three-dimensional ones. We shall consider 
only two-dimensional disturbances in this paper. If u and v denote the velocity 
components in the directions of increasing x and y, respectively, and p denotes 
the pressure, and if 

the equations of motion can be written as 

u1 = u p ,  v1 = v/V, p 1  = p/pv2 ,  

av, av, av, ap 1 
- - I - U , ~ ~ + I U ~ ~  = - - - - - 1 + F - 2 + - A ~  
a7 Y av R l' 

(9) 

in which A denotes the Laplacian operator in x and y, and F denotes the Froude 
number defined by 

F = V(gd)-*. (10) 
The equation of continuity is au, av 

-+-I = 0. 
ax ay 

Resolving each of the dependent variables into a primary part and a perturba- 

(12) 
tion part, we have 

in which P is p / p  V2, and the accented quantities are the perturbation quantities. 
If (12) is substituted into (8) and (9), the terms pertaining to  the primary flow 
only, being in balance, are subtracted out, and quadratic terms in the perturba- 
tion quantities are neglected, the resulting equations are 

u1 = U-ku ' ,  Vl = V I ,  p 1  = P + p ' ,  

1 
u:+ Uiuj.+U,v' = - ~ ; + - A u ' ,  R (13) 

(14) 
1 
R V: + U V ~  = -p ,+ -  A d ,  

with the subscripts indicating partial differentiation. Equation ( 1 1) can be 

a%? avl replaced by 
-+- = 0, 
ax ay 

which permits us to use a streamfunction @ and to write 

u'=@ U' = - @  X' 
With (15), the equations of motion can be written as 

1 
@,,+ Qhv- U,@C, = - P ; + R W v 7  

@XT i- U @ X X  = P; +x W X .  
1 



Instability of unsteady$ows. Pctrt 1 741 

Since U depends on 7 as well as y, (16) and (17)  do not permit the use of the 
exponential time-factor. However, as far as x is concerned, we can still consider 
any disturbance to be a Fourier integral of disturbances simply periodic in x, 
and (16) and (17) allow us to write 

and (16) and (17) as 
@ = $(y ,  7) eiaz, p' = f ( y ,  7) eiae, (18)  

(19) 

(20) 

1 
R $,7+iau$,-iaU& = -iolf+- ($,g,-a2q&), 

ia 

Elimination off from (19) and (20) produces 

iqb7 - a2C$ = fy -t ($,, - a"). 

R -+iaU $"-a2$)-iaU,,$ = $""- 2 0 1 ~ 4 " + ~ 4 $ ,  (21)  
K 7  r: 1 

in which the primes on q5 indicate differentiations with respect to y.  
The boundary conditions at  the bottom are the non-slip conditions 

(i) $(1,7) = 0, (ii) $'(1,7) = 0. (22) 

The boundary conditions at  the free surface are that both the shear stress and the 
normal stress there must be zero. Since the shear stress of the primary flow and 
g both vary with y, and the free surface will not be flat, the free-surface boundary 
conditions must include contributions from the primary flow as a result of the 
vertical displacement of the free surface. If this displacement is denoted by 
yd, the relationship between 7 and @ is provided by the kinematic condition 

With 7 = h(7) eiaz, 

( 2 3 )  becomes [;+iaa(o; 7 )  1 h = -ia$(O, 7). (24) 

The condition of zero shear at  the free surface is 

U,, (097) 7 + @g, - @zx = Q ,  

u,, (0,7) h + $"(O,  7) + a"(0,7) = 0. or (iii) (25) 

The condition that the normal stress vanish at the free surface is, in its primitive 
form, 

in which T is the surface tension. Since, by (7), 

2 
R 

(26) can be written as 
- F-27 -p' - - @,a, + Sy,, = 0, 

S = T/pd V2.  in which 

(27) 
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Using (19) to evaluate f and then (18) to evaluate p‘, and substituting the result 
into (27), we have (remembering LL = 0 at y = 0 )  

(28) 
1 
R i c~(P-~+ 8012) h + ~ (q5”’ - 3a2q5’) - q5: - iaUQ’ = 0, or (iv) 

to be applied at  y = 0. 

and (28). 
The differential system governing stability consists of (21), (22), (24), (25) 

4. A discussion of the approach of quasi-steadiness 
Since the approach of quasi-steadiness is so often used, a discussion of its use- 

fulness and its limitations is desirable. Consider the Orr-Sommerfeld equation 
(21), to be solved with linear homogeneous boundary conditions. The U in (21) 
is assumed to be a function of y with a t  least some of its coefficients containing 
cos w r  or sin or. For clarity we shall denote w r  by 7’. The following expansion is 

# = euT(q50 (y, 7’) + wq51 (y, 7’) + ~ ‘ q 5 ~  (y,~’) + . . .>, (29) 
assumed for q5:  

with e = cro+we,+w2e2+ .... (30) 

Expansions (29) and (30) are then substituted into (21) and the boundary condi- 
tions, and terms of equal power in w are sorted out. The first two equations so 
obtained are 

L # ~  = 4;” - 2&2#;: + = R[(V, + iau) ($; - a2#o) - iau”q5,l= 0, (31) 

and the other equations are similar in form. In  the same way the boundary condi- 
tions can be expressed in terms of q50, c$~, etc. In  (31) and (32) all accents mean 
differentiation with respect to y. It is immediately evident that the differential 
system (though we have not written out the boundary conditions explicitly) 
governing Qo is just that used if the approach of quasi-steadiness is used. Note 
that cro and Q0 are determined with the rf  in U and u” serving only as a parameter. 
Hence cro is a function of 7’ and q50 contains 7’. After co and #o are determined, 
(32) and the pertinent boundary conditions will determine a; and &. It is very 
important in this connexion to observe that: (a)  the homogeneous parts of the 
differential equations (31), (32 ) ,  etc., are identical in form; (b )  the homogeneous 
parts of the boundary conditions in successive stages of determination are also 
identical in form; (c) and therefore go can be considered once for all the eigenvalue 
pertaining to the operator L and the linear operators in the homogeneous parts 
of the boundary conditions. It is the item ( c )  that allows us to determine crl, c2, 
etc. Otherwise since (32) and the boundary conditions for q51 are non-homogeneous 
any el would do. 

Presumably the expansions (29) and (30) are convergent for any finite w .  
If w is very small, the quasi-steadiness approach gives good results. For an w 
not very small, more terms in (31) and (32) may have to be taken. Obviously if 
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w is very much greater than 1 the quasi-steadiness approach cannot be relied 
upon to give good results. 

In  any practical application of the approach just outlined, the success would 
depend on the ease with which the particular solution of (32) for $1 is obtained. 
We see a t  once that, U being dependent on y ,  the task of solving for (31) is 
already in general rather difficult, let alone the task of finding particular solutions 
for (32) and the subsequent equations. However, for long waves (31) and (32) 
can be solved by a power expansion in a, and, provided the boundary conditions 
allow a determination of r,, which does not correspond to rapidly damped distur- 
bances, solutions indicating long-term instability are quite readily obtainable. 
In  fact, if a free surface or an interface exists, the boundary conditions are such 
that such solutions are indeed obtainable. This paper illustrates in detail how 
the stability of an unsteady flow with a free surface can be studied by an expan- 
sion in a. It turns out that the expansion in w is then unnecessary. 

5. Extension of the Floquet theorem 
Before we present the solution to the problem formulated in 0 3, we shall present 

an extension of the famous Floquet theorem to the realm of partial differential 
equations. Since this extension must have wide applications to mathematical 
physics, we shall consider a more general equation than the Orr-Sommerfeld 
equation, and general linear boundary conditions. What we seek to establish is the 

Theorem. Given the differential equation 
a m-1 

- a7 i = o  C fi ( y )  Di$ = Om$ + mi1 {= 0 gi (y, 7) Did (33) 

in the domain O G y b l ,  O < t < c o ,  

in which fi ( y )  and gi ( y ,  r )  can be expanded into a power series in y in the domain, 
gc(y,7)  is periodic in r with period T ,  and Diq5 is the i-th derivative of $ with 
respect to y ,  and given the boundary conditions 

a 38-1 m- 1 
- 2 hiiDi$+ C lciiDi$ = 0 at y = 0, 
a7 i = o  i = O  

a m-1 m- 1 

i = O  
- c piiDi$+ 2 qjiDi# = 0 at y = 1, 
a7 i =o  

(34) 

(35)  

the independent solutions can be written in the form 

ep17x(Y, 71, (36) 

in which x ( y ,  r )  is either a periodic function of r with period T or can involve 
polynomials in 7 as well as periodic functions in 7 with period T.  The h and p 
in (34) and (35) are constants, the k and q can be periodic functions of 7 with 
period T. 

The demonstration will be sketched out briefly here. The function q5 can be 
expanded in the form 

9 = $o(7)+$1(r)y+q52(r)y2+ ...+9n-1(r)yn-1+.... (37) 

If (37) is substituted into (33), (34) and (35), and equal powers in y are collected 
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in the case of (33), and if we stop at the term q5n-l(r)yrL-1, we have a total of 
first-order ordinary differential equations in r, involving n unknowns 

#i (i = 0, .... n-1). 

These can be reduced to one n-th order differential equation with the single 
unknown q5k, say. Then Floqnet’s theorem (Ince 1944, p. 381; or Coddington 
& Levinsoii 1955, pp. 78-81) states that is of the form 

ePl7P(r), (38) 

(39) 

in which P(r)  is periodic with period T ,  if the characteristic root ,ul is simple, or 
of the form 

if ,ul is a multiple root of a secular equation. Now all the other q5< (i -f k) can be 
expressed as a linear form of (i = 0, .... n - 2 ) ,  by an elimination procedure 
applied to the n first-order equations. Hence the factor epi7 is in all the #i. If 
,ul is simple, $,,, q51,. ... and are all of the form (38). Otherwise they are of the 
form (39), with the same ,ul. Thus the theorem is true up to n-terms. As the 
number of terms taken in (37) is increased, more and more characteristic roots 
appear, corresponding to more and more modes. Presumably the series (37) will 
converge to the solution wanted, and there will be a discretely infinite number of 
modes. Aside from the question of convergence, which the author must leave to 
more capable minds, the theorem is established. 

The theorem can also be established in the original manner of Floquet, if we 
assume that there exist a complete set of discretely infinite number of solutions 

epi7P(r) x a poIynomial in r, 

#l(Y,T)7 42(Y,r), .... 
Since q5i (y, r + T) is obviously also a solution, we have 

We seek a solution wi (y, r )  such that 

wi (y, r + T )  = swi (y, 7). (41) 
Now since the set Qi (y, r )  is complete, 

Substituting (40) and (42) into (41), and demanding that not all the 6’s be zero. 
we have 

a11--s a12 a13 ... 
a21 a22-s a23 ... 
a31 a32 a33-s ... = 0. (43) 

... ... I ... . * *  I 1 -., ... ... ... 1 

If ,ul is a simple root of (43), then writing 
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w1 (y, 7 )  e-1'1'' 
which is to say that 

is periodic. Hence the form (36) follows. The case of multiple roots has been dis- 
cussed in the preceding paragraph, and we shall not dwell upon the subject any 
longer, except to say that the convergence of any particular root of (43) to a 
definite value as the the number of rows (and columns) is increased has been left 
unproven. The arguments advanced in this section would be complete if the 
convergence of (37) had been established. But in their present form they are so 
highly plausible that we need have no doubt of the truth of the theorem. 

6. Solution of the problem 

,ul to be a simple root of (43), we shall write 
We shall now apply the results of 0 5 to the solution of the problem. Assuming 

$(7, Y) = eFlTx(7, y)7 
h(7) = e P l T H ( T ) ,  

in which X ( T ,  y) and H(T~,&)  are periodic in 7.  

we shall follow the approach used in Yih (1963) and write 
Since we expect to find instability for long waves, or small wave numbers, 

(44) 

x(', = $0 (y7 '1 f a$l @ 7  7, + .'$2 (y7 '1 + .'. 
H ( 7 )  = h0(7) + ahl (7)  + a2h2 (7)  + .. . , 

= o,+a!e,+a202+ ..., 
in which the $'s and i t 's are all periodic in 7,  and the 8's are real constants. Collect- 
ing terms of equal powers in a! in equations (21) and (24), we obtain a series of 
equations in y and 7. The first of the series constituting (24) is 

ah0 - + Boho = 0. 
a7 

Since h, must be periodic in 7,  it follows immediately that? 
0, = 0 ,  

and without loss of generality h, = 1. (45) 
Then for the first approximation the differential system is 

(ia) Q O ( 1 , T )  = 07 (iia) $A (1 ,  T ) = O ,  
(iiia) U " ( 0 ,  T ) + &  (0, 7 )  = 0,  (iva) &'-R(&), = 0 at  y = 0. 

The solution of the system is simply 

$0 == - u(y, 7 )  + B, (7) f D(& 4- &*) + iE(& - &*), (461 

in which V, = sinh [p( 1 + i)y] eioT, B, = b, eiw7 + b, e-iwr, 

A (  1 - iy) 
b -  y = tanhptanp, 

O - coshp (1 + i )  ' 
D +iE = A ( l  -iy) tanhp(1 +i), 

D and E being real numbers. Note that the 7-dependence of $, is dictated by (iiia). 

t The other possibility is ha = 0, 8, + 0. But it can and will be shown that this leads to 
a damped mode as far aa long waves are concerned. Imaginary values for O,, with ha + 0, 
lead to nothing new. 
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For the next approximation, (24) gives 

%+8, = -iB,,(7). 

Since B, contains only sin w7 and cos w7, and h, is purely periodic. 

0, = 0 

and 
1 

(T) dr = -- (b, e i w T -  b: e - i w T ) ,  
w (47) 

the constant of integration being chosen to be zero so that the term independent 
of 7 in h is A,( = 1) once and for all. This practice will not affect the criterion of 

~ 1 stability in the least, and will be followed in calculating h,. Equation (32) shows 
' 

that even at  the second approximation no instability is manifested. 
For $1, the governing system is, since 8, = 0, 

(21 6) 
a 
a7 

iR(U&-U"$, )  = &"-B-&, 

(ib) $,(1,r) = 0, (iib) & ( l , r )  = 0. 

(iiib) U"(0,7)hl+&(0,7)  = 0,  

(ivb) i F - 2 + - - & ' - F q 5 ~ - i U &  =Oat  y = O .  
1 a 
R 7 

The 7-dependence of q5, is dictated by this system. Instead of terms containing 
eiwT and e-iw7, those containing e+i2wT or no 7 at all must be used. The particular 
solution of (21 b) is 

in which J satisfies the equation 
a 
a7 

Y t ' - R - J  = Bout', (49) 

and the integrations are with respect to y, with dy omitted in each integration. 
After some straightforward integrations, we obtain 

(50)  

(51) 

$lp = iR(1, + 1, + I, + 1; + 1: +I;) ,  
iA2( 1 + 7 2 )  

tanhp( 1 + i) (sinh 2 jy  + i sin 2py), 
4wR 

in which I, = 

iA2( 1 - iy)2 
cosh [p( 1 + i) y] eizwT. 

= - wRcoshp(l+i) (53)  

The complementary solution is of the form 

$la = A ,  +B,y + C1y2 + D,y3 +E1V1 +B'lWl+ ETVT +PTWf + G(7) + K(7)  2 / ,  

in which the eight coefficients are constants, and 

(54) 

V, = sinh [p( 1 + i) y] ei2wT, W, = cosh [p( 1 + i) y] ei twr ,  

G(7) = g, ei2wT + g? e - i 2 W ~ ,  K(7)  = k,  ei2wT + kT e--i207. 
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Now a look at (24) reveals that, for prediction of stability for long waves, 
none but the time-independent terms in 

( 5 5 )  
and in U ( 0 ,  r )  h, need be calculated. For higher approximations at larger a we 
need to include the terms containing I,, El,  Fl, G(r)  and K(r) ,  but not at this 
stage. Considering then the terms independent of r ,  we have, in the place of 
$,, the function 

satisfying the conditions 

(ic) O(1) = 0, (iic) O’(1) = 0, 

(iii c) O”(0) + ;A2( 1 + r2) R[sechP( 1 + i) + sechp( 1 - i)] = 0, 

(ivc) iF-, + (l/R)@”’ - iA2/3( 1 + y2)  [( 1 + i )  tanh/3( 1 + i) 

The solution is given by the equations 

$1 = $123 + $lC 

@(y)  = iR( 1, + I$  + 1, + IT) + A , + B, y + C, y2  + D, y3, ( 5 6 )  

+( l - i ) tanhp( l - i ) ]  = 0. 

iRA2( 1 + 7 2 )  

P 
B, = -30,- 

in which R, and R, are respectively the real part of 

cosh/3( 1 + i ) ,  
i i 
- tanh P( 1 + i) (sinh 2P + i sin 2P) + 
4 cash /?(I- i )  

sinhp( 1 + i ) .  2P ;p tanh p( 1 + i) (cosh 2/3 + i cos 2P) - 
2 (1 +i) coshP(1- i) 

Now, according to (24), 

The term in U(0 ,  r )  h, which is independent of r is 

i2A2( 1 + y2) 
1 3 ,  

- 
w (59) 

in which I, is the coefficient of the imaginary part of sech P(l +i). The part of 
(0, r )  which is independent of r is 

i2A2( 1 + y2) 
@ ( O )  = A , +  4% 

Thus the part on the right-hand side of (58) which is independent of time is 
simply - 8, - iA,, and this must be zero since h, is periodic in r. Hence 

e, = --i~,, 
and the criterion sought is that the flow is unstable or stable according as - iA, 



748 Chia-Shun Yih 

is positive or negative, or according as 

P L x  10n 

0.10 8.0042 
0.20 1.2772 
0.30 6.4093 
0.40 1.9785 
0.50 4.6005 
0.60 8.7539 
0.80 1.9975 
1.00 2.7859 
1.20 2.7075 
1-40 2.0792 
1-60 1.3790 
1.80 8.2447 
2.00 4.4619 
2.20 2.1067 
2.40 7.5952 
2.60 7.1058 
2.80 -2.1722 
3.00 -2.8502 

n 

5 
3 
3 
2 
2 
2 
1 
1 
1 
1 
1 
2 
2 
2 
3 
4 
3 
3 

P L x  10" 

3.20 -2.4914 

3.60 -1.1007 

4.00 -2.2517 
4.20 -3.1780 
4.40 5.5388 
4.60 7.9145 
4.80 7.1305 
5.00 5-2075 
5.20 3.2385 
5.40 1.6890 

6.6071 5.60 
5.80 8.0065 

3.40 -1.7888 

3.80 -5.7129 

6.00 -1.8288 
7.00 -5.2612 
8.00 -7.6320 
9.00 6.8866 

10.00 - 1.6199 

Yl, 

3 
3 
3 
4 
4 
5 
5 
5 
5 
5 
5 
5 
6 
7 
6 
7 
8 

10 
9 

TABLE 1 

Table 1 shows the variation of the left-hand side (L)  of (61) with/?. The maximum 
value of L is 0.279. When PP2 is greater than this value, there is stability. Table 1 
is shown graphically in figure 2. If L is positive, there can be instability even for 
small Reynolds numbers provided w* and P are sufficiently large. It is interesting 
to see that for certain ranges of ,8 the value of L is negative, so that in those ranges 
the motion actually stabilizes the free surface against the formation of long 
waves. For very small frequencies such that wR = 2p2 < 1, the criterion derived 
from (61) is that the flow is unstable or stable according as 

(61a)  QA2w2R2 > or < F-2, 

or, since A = for small p, according as 

in which w* d2/v is the Reynolds number based on o*. 
The result obtained is that 

= - ia2A, + 0(a3). 

For long waves, a < 1, and the criterion (61) is valid. As a increases toward the 
order of 1, more terms are needed. But as long as a -g 1, the stability or instability 
found is for any period of time, however long. We were concerned with the secular 
instability of the flow, and we have solved the problem explicitly for long waves. 



Instability of unsteady Jlows. Part 1 749 

0 1 2 3 4 5 6 

P 
FIGURE 2. The variation of the left-hand side (L)  of (61) with P. If L > F-2, there is 

instability. 

7. Discussion 
For u = w * d / V <  1 and p2< 1, 

the results obtained by the use of the approach of quasi-steadiness should be in 
agreement with the present results. But the former can be obtained from the 
results of Benjamin (1957) for the stability of the flow of a liquid layer down an 
inclined plane with angle of inclination 8, provided we make the correspondences 

g' = (g2+a2)i7 8 = arctan (alg), (62 )  

in which a is the (dimensional) acceleration of the plane 

(63 )  a(t)  = - w* V sin wy, t ,  

and g' is the g in the Benjamin-Yih problem. The average velocity (dimensional) 
of the flow in that problem is 

(64 )  U, = Q(g' sin 8) d2 /v  = ad2/3v.  

Then the in the exponential factor 
euit = ea,cit 

(a+ = 2n/h, h = wavelength) is, according to the results of Benjamin, 

(65 )  
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the term involving surface tension being negligible. If (63) and (64) are substituted 
into (65), we have 

If 

a$d2 202,V2d4 
- 
- -( 3v 5v2 

the mean value of vi over a long period of time is positive, and the flow is unstable 
in the long run. But ( 6 7 )  is identical to (6 lb ) .  Hence there is agreement, as one 
would expect. 

One other interpretation of (66), however, is that if 

there are intervals of time during which g1 is positive, and one might be tempted 
to conclude that the flow is unstable. But we must remember that we are, when 
considering linear stability theory of an unsteady flow, not concerned with short- 
range instability but with long-term instability. Provided the magnitude does 
not increase during the periods of positive vi beyond the range of validity of the 
linear theory, the periods of positive vi are followed (and preceded) by periods 
of negative vi if (67) is not satisfied, and in these latter periods the disturbances 
will be damped, so that in the long run the flow is stable unless (67) is satisfied. 

Finally we shall show that the possibility of h, = 0 and 8, + 0 does lead to 
damped modes only. In  this case it is more convenient to treat (21), ( 2 2 ) ,  ( 25 )  
and (28 )  directly. If we write 

# = @.,+aa)?,+a2a),,+..., (69) 

and further assume = eBo74(y) ,  ( 70 )  

then q(y) satisfies RO,q” = q””, 

y”(0) = 0, q”’(O)-R8,p’(O) = 0. 

q(1 )  = 0, 4”1) = 0, 

Multiplying (71) by q, integrating between zero and 1 (by parts if necessary), 
and utilizing the boundary conditions (72 )  and (73), we find that 

ROO j1 (qf)2dy = -I1 (q”)2dy, 
0 0 

so that 19, is negative. In  fact, 8, can be found explicitly. For the solution is 

q = A’ + B’ y + C‘ e8-V + D’ e - l g  with p‘ = (R6,)4. 

The boundary conditions ( 7 3 )  demand? 

C’ = - D f ,  B’ = 0. 

t See Yih (1963, p. 334) for a similar discussion. One evaluation for B there was wrong, 
but the conclusions were correct. 
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The boundary conditions (72) then give 

A’ + B‘ + 2C’ sinhp’ = 0, B’ + 2C’p’ coshp’ = 0,  

75 1 

the second of which gives p’coshp’ = 0. 

The solution p’ = 0 must be discarded, for it leads to q = 0. The allowable solu- 

n being integers. Hence all modes are damped. 

This u7ork has been jointly sponsored by the Army Research Office (Durham) 
and the National Science Foundation. The author is grateful to Mr C. H. Li for 
the computation that leads to table 1 and Dr David Herbert for checking (61b). 
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